

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International GCSE

In Chemistry (4CH1) Paper 1C and Science (Double Award) (4SD0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

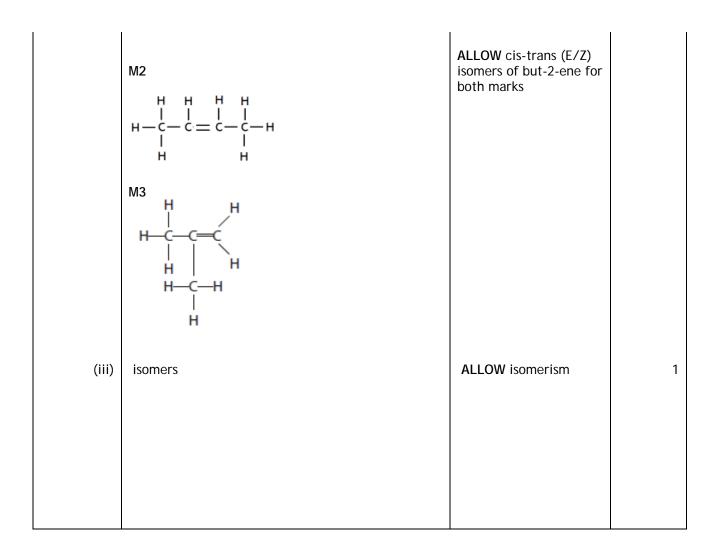
Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021 Question Paper Log Number 66056 Publications Code 4CH1_1C_2106_MS All the material in this publication is copyright © Pearson Education Ltd 2021 General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer		Notes	Marks
1 (a)	Information	Substance	ALLOW correct formulae	5
	a good conductor of electricity	copper	Tormulae	
	an element that has a basic oxide	copper		
	a substance used as a fuel	methane		
	a major cause of acid rain	sulfur dioxide		
	a non-metallic element that is a solid at room temperature	iodine		
(b)	A description which refers to the	following points		2
	M1 bubble/add (the gas/carbon limewater	dioxide) into	ACCEPT calcium hydroxide	
	M2 (limewater) turns cloudy/mil	ky	ACCEPT white precipitate	
			M2 dep on use of limewater/calcium hydroxide in M1	
				Total 7


Quest num			Answer		Notes	Marks
2 (a)	(i)	Sub-atomic particle	Relative mass	Relative charge	1 mark for each correct answer	3
		electron	0.0005	-1	ACCEPT minus one REJECT - unqualified ACCEPT one	
		proton neutron	1 1	+1 0	ACCEPT zero/none/ no charge	
	(ii)	nucleus				1
(b)	(i)	U				1
	(ii)	25				1
	(iii)	W				1
	(iv)	Y and Z				1

Question number	Answer	Notes	Marks
2 (c)	 sum of masses multiplied by percentages division by 100 answer given to 1 decimal place 	Correct answer of 20.2 with or without working scores 3	3
	Example calculation		
	M1 (91.2 x 20) + (8.80 x 22) OR 2017.6	ACCEPT 2018	
	M2 2017.6 ÷ 100 OR 20.176	ACCEPT 20.18	
	M3 20.2 OR answer from M2 given to 1d.p.		
		correct answer without working scores 3	
		20.176 and 20.18 without working score 2	
		2020 scores M1 and M3	
		20 without working scores 0	
		20 with correct working scores 2	
			_
l			Total 11

	Questi numb		Answer	Notes	Marks
3	(a)	(i)	diffusion		1
		(ii)	Any two from	ALLOW shake/swirl	2
			M1 stir (the mixture)	ALLOW any description of heating	
			M2 heat (the mixture)	5	
			M3 grind the sugar or break into smaller pieces or increase its surface area		
	(b)	(i)	(simple) distillation	REJECT fractional distillation ALLOW distilling OWTTE	1
		(ii)	An explanation that links the following two points		2
			M1 (water/ vapour/ steam / gas) is cooled		
			M2 and condenses OR in the condenser		
					Total 6

Question number	Answer	Notes	Marks
4 (a) (i)	A description including any three of the following	M1 and M2 can be scored from a labelled diagram	3
	M1 pour some solvent into a beaker /chromatography tank	ALLOW any named solvent	
	M2 place the paper in the solvent so that the food colourings are above the level of the solvent		
	M3 leave the paper until the solvent reaches the level shown in the diagram/ has moved to near the top of the paper OWTTE		
	M4 take the paper out and leave to dry		
(ii)	one/1		1
(iii)	(F/it is) insoluble (in the solvent)/ does not dissolve (in the solvent)		1
(iv)	M1 E and H		2
	M2 they contain a dye that moved the furthest (distance up the paper)/ is closest to the solvent front / has the greatest $R_{\rm f}$ value	M2 dep on M1	
(b)	M1 distance moved by solvent = 59-61mm and distance moved by the dye = 37-41mm	ALLOW distances in cm e.g. 6cm and 4cm	3
		If paper has been printed on A4 distances will be 51-53mm and 33-37mm	
	M2 distance moved by the dye \div distance moved by the solvent \approx 0.67		
	M3 (the dye in food colouring) G		
		ALLOW alternative methods	
			Total 10

Question number	Answer		Notes	Marks
5 (a) (i)	molecular formula	C ₂ H ₆		3
	name	ethane		
	empirical formula	CH ₃	Penalise incorrect use of case, superscripts	
		H H H - C - C - H H H		
(ii)	$2C_2H_6 + 7O_2 \rightarrow 4CO_2$	+ 6 H ₂ O	ACCEPT multiples and fractions	1
(iii)	Any two from			2
	M1 carbon monoxide/CO			
	M2 carbon/C		ALLOW soot	
	M3 water (vapour)/steam/H ₂ O		IGNORE carbon dioxide	
(b) (i)	A addition B is incorrect as it is not a decom C is incorrect as no solid precipit D is incorrect as it is not a substi-	tate is produced		1
(ii)	Any two from M1 H H H H HH - C = C - C - C - HH H H		Do not accept displayed formulae of cyclic alkanes	2

PMT

Question number	Answer	Notes	Marks
5 (c) (i)	$ \begin{array}{c c} H & CH_{3} \\ I & I \\ C & -C \\ I & I \\ H & H \end{array} n $ M1 correct repeat unit M2 extension bonds, brackets and n after brackets	If double bond between carbon atoms scores 0	2
(ii)	A discussion which refers to the following points M1 polymers/poly(propene) will remain in landfill indefinitely OWTTE M2 (as they) are inert /unreactive/do not biodegrade M3 burning produces toxic gases	ALLOW burning produces greenhouse gases	3
			Total 15

		PMT
Notes	Marks	
s on surface M2 and M3	3	

number	Answer	Notes	Marks
6 (a) (i)	Any 3 from		3
	M1 effervescence/bubbles/fizzing		
	M2 moves	moves on surface scores M2 and M3	
	M3 floats		
	M4 disappears/gets smaller	ALLOW dissolves	
	M5 vapour trail/steam	IGNORE melts/heat produced IGNORE any reference to indicators	
(ii)	An explanation that links the following two points		2
	M1 the universal indicator turns purple/blue		
	M2 (because) OH ⁻ /hydroxide ions are present	ALLOW an alkaline solution /an alkali is produced / a solution of high pH is formed	
(iii)	2Li + 2H ₂ O → 2LiOH + H ₂	ALLOW multiples and fractions	2
	M1 all formulae correct		
	M2 balancing of correct formulae	M2 dep on M1	
(b) (i)	An explanation that links the following two points		2
	M1 to remove any other ions/chemicals/ impurities/ contaminants/ compounds/substances (that may be on the wire)		
	M2 (so that) they do not interfere with/mask the colour of the flame	ALLOW (so that) they do not affect the result (of the test) ALLOW (remove substances) that could colour the flame	

Question

(ii)	D yellow	1
	A is incorrect as sodium ions do not give a green flame B is incorrect as sodium ions do not give a lilac flame C is incorrect as sodium ions do not give a red flame	

Question number	Answer	Notes	Marks
6 (c) (i)	K⁺ and SO₄²⁻		1
(ii)	An explanation that links the following four points		4
	M1 (potassium sulfate) has a giant (ionic) structure /lattice		
	M2 electrostatic attraction between oppositely charged ions		
	M3 (ionic bonds or forces / attractions between ions) are strong	ionic bonds are strong scores M3	
	M4 a large amount of energy is needed to overcome the forces/break the bonds		
			Total 15

Answer		Notes	Marks
→ magnesium chloride + hydrogen		ACCEPT in either order	1
			2
temperature of the acid at the start in °C	22.4		
highest temperature reached in °C	43.2	ALLOW ECF from incorrect starting	
temperature rise in °C	20.8	temperature	

Question
number7(a)

Question number	Answer	Notes	Marks
7 (ii)	 substitute correct values into Q = mcΔT evaluation 	Correct answer of 2184 or 2194 without working scores 2	2
	Example calculation		
	M1 Q = 25 x 4.2 x 20.8	ALLOW 25.12g for m	
	M2 2184 (J)	ACCEPT any number of sig figs except 1 ALLOW ECF from M1	
(iii)	 find the amount of magnesium in moles divide Q by n convert answer in J/mol to kJ/mol answer including sign Example calculation M1 n(Mg) = 0.12 ÷ 24 OR 0.005(0) 		4
	M2 Q ÷ n OR 2184 ÷ 0.005(0) OR 436,800 (J/mol)	ACCEPT use of 2180 or 2200	
		ALLOW ECF on incorrect answer to (ii) and/or M1	
	M3 436,800 ÷ 1000 OR 436.8 (kJ/mol)	ALLOW ECF on incorrect answer to M2	
	M4 – 436.8 (kJ/mol)	ALLOW ECF on incorrect answer to M3	
		Correct answer with minus sign and without working scores 4	
		Correct answer without minus sign and without working scores 3	
		ACCEPT any number of sig figs except 1 throughout (ii)	
		-438.8 or-438.9 also scores 4 (from 5.12g and 2194J in (ii))	
			Total 9

Question number	Answer	Notes	Marks
8 (a)	A description which refers to the following six points		6
	Test for ammonium ions:		
	M1 add sodium hydroxide (solution) (and warm)	ALLOW other alkalis	
	M2 test the gas with (damp) (red) litmus paper/(damp) universal indicator paper	No M2 or M3 if solution tested with litmus/ universal indicator paper	
	M3 (litmus) turns blue /(universal indicator) turns blue/purple (if ammonium ions are present)	papor	
	Test for sulfate ions:		
	M4 add (dilute hydrochloric/nitric) acid	M4 and M5 can be in either order	
	M5 add barium chloride (solution) /barium nitrate (solution)		
	M6 white precipitate (if sulfate ions are present)		
		No M4 or M6 if sulfuric acid added M6 dep on M5	
(b) (i)	neutralisation	ALLOW acid-base OR acid-alkali	1
(ii)	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$	ALLOW multiples	1
(iii)	M1 3 bonding pairs correct		2
	M2 rest of molecule correct	M2 dep on M1	
	HNH	ALLOW any combination of dots and crosses	
	Н		
			Total 10

	Question numbe		Answer	Notes	Marks
9	(a)	(i)	carbon dioxide/a gas is given off/escapes	REJECT incorrect gas	1
		(ii)	to prevent acid/ liquid/ solution/ spray from leaving the flask OWTTE		1
		(iii)	An explanation that links two of the following		2
			M1 (insoluble) calcium sulfate will form		
			M2 which will form a coating/ layer on the marble chips		
			M3 slowing down/ preventing/ stopping the reaction	M3 dep on M1 or M2	
	(b)	(i)	An explanation that links the following four points		4
			M1 the curve is steep(est) at the start		
			M2 because the (acid) concentration is high(est)	ALLOW there are the most (acid) particles in solution	
			M3 the curve becomes less steep as the solution/ acid is becoming more dilute	ALLOW the curve becomes less steep as there are fewer acid particles/particles in solution	
			M4 the curve levels off/ stops going up when the acid has all been used up	Solution	
				IGNORE references to particles of marble chips IGNORE references to energy	
			OR		
			M1 the curve is steep(est) at the start		
			M2 because the reaction is fast(est) at the start		
			M3 the curve becomes less steep because the reaction slows down		
			M4 the curve levels off/stops going up when the acid has all been used up		

(ii)	M1 curve drawn starting at the origin and below the original curve	2	
	M2 curve levels off at 0.27 g + or – half a small square		

Question number	Answer	Notes	Marks
9 (c)	An explanation that links the following four points		4
	M1 the rate of reaction increases/ the reaction is faster/ the reaction speeds up		
	and any three from		
	M2 because the particles gain (kinetic) energy /move faster		
	M3 there are more collisions per unit time		
	M4 more collisions/particles have energy greater than the activation energy		
	M5 more collisions are successful		
		there are more frequent	
		there are more frequent successful collisions scores M3 and M5	
			Total 14

Question number	Answer	Notes	Marks
10 (a) (i)	so that the (hot) lead does not react with oxygen/air (converting back into lead oxide)	ACCEPT so that lead is not oxidised (back to lead oxide)	1
(ii)	M1 repeat the heating M2 until the mass remains constant/ does not change	ACCEPT heat to constant mass for both marks	2
(b) (i)	4.66 (g)		1
(ii)	0.48 (g)		1
(iii)	 calculate the moles of lead and oxygen divide by the smaller number calculate the whole number ratio give the empirical formula 		4
	Example calculation M1 $\frac{4.66}{207}$ and $\frac{0.48}{16}$ OR 0.0225 and 0.03(00) M2 $\frac{0.0225}{0.0225}$ and $\frac{0.03(00)}{0.0225}$ OR 1:1.33	Division by atomic numbers or upside down calculation scores 0	
	M3 1 x 3 and 1.33 x 3 OR 3:4 M4 Pb ₃ O ₄	3:4 ratio without working scores 3 Pb ₃ O ₄ without working scores 4	
		ALLOW ECF from incorrect masses.	

Question	Answer	Notes	Marks
number 10 (c) (i)	$Pb(NO_3)_2$ (aq) + 2HCI (aq) \rightarrow $PbCI_2$ (s) + 2HNO ₃ (aq)	ALLOW any combination of uppercase and lowercase letters	1
(ii)	• calculate the amount of PbCl ₂ • multiply the moles by the M_r of PbCl ₂ • evaluation to show that the value is about 5 g Example calculation M1 $n(PbCl_2) = 0.0370 \text{ OR} 0.0185 \text{ (mol)}$		3
	M2 mass of PbCl ₂ = 0.0185 x 278 (g) M3 5.143 (g)	MAX 1 for 0.0370 x 278 if no division by 2 in M1 ALLOW any number of sig figs 5.1, 5.14 and 5.143 g without working score 3 5 g without working scores 0 ALLOW alternative methods	
			Total 13

PMT